Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2310866121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483996

RESUMO

Lymphocyte activation gene-3 (LAG-3) is an inhibitory receptor expressed on activated T cells and an emerging immunotherapy target. Domain 1 (D1) of LAG-3, which has been purported to directly interact with major histocompatibility complex class II (MHCII) and fibrinogen-like protein 1 (FGL1), has been the major focus for the development of therapeutic antibodies that inhibit LAG-3 receptor-ligand interactions and restore T cell function. Here, we present a high-resolution structure of glycosylated mouse LAG-3 ectodomain, identifying that cis-homodimerization, mediated through a network of hydrophobic residues within domain 2 (D2), is critically required for LAG-3 function. Additionally, we found a previously unidentified key protein-glycan interaction in the dimer interface that affects the spatial orientation of the neighboring D1 domain. Mutation of LAG-3 D2 residues reduced dimer formation, dramatically abolished LAG-3 binding to both MHCII and FGL1 ligands, and consequentially inhibited the role of LAG-3 in suppressing T cell responses. Intriguingly, we showed that antibodies directed against D1, D2, and D3 domains are all capable of blocking LAG-3 dimer formation and MHCII and FGL-1 ligand binding, suggesting a potential allosteric model of LAG-3 function tightly regulated by dimerization. Furthermore, our work reveals unique epitopes, in addition to D1, that can be targeted for immunotherapy of cancer and other human diseases.


Assuntos
Antígenos de Histocompatibilidade Classe II , Linfócitos T , Animais , Humanos , Camundongos , Dimerização , Fibrinogênio/metabolismo , Ligantes , Mutação
2.
Artigo em Inglês | MEDLINE | ID: mdl-38415197

RESUMO

Over the past two decades Biomedical Engineering has emerged as a major discipline that bridges societal needs of human health care with the development of novel technologies. Every medical institution is now equipped at varying degrees of sophistication with the ability to monitor human health in both non-invasive and invasive modes. The multiple scales at which human physiology can be interrogated provide a profound perspective on health and disease. We are at the nexus of creating "avatars" (herein defined as an extension of "digital twins") of human patho/physiology to serve as paradigms for interrogation and potential intervention. Motivated by the emergence of these new capabilities, the IEEE Engineering in Medicine and Biology Society, the Departments of Biomedical Engineering at Johns Hopkins University and Bioengineering at University of California at San Diego sponsored an interdisciplinary workshop to define the grand challenges that face biomedical engineering and the mechanisms to address these challenges. The Workshop identified five grand challenges with cross-cutting themes and provided a roadmap for new technologies, identified new training needs, and defined the types of interdisciplinary teams needed for addressing these challenges. The themes presented in this paper include: 1) accumedicine through creation of avatars of cells, tissues, organs and whole human; 2) development of smart and responsive devices for human function augmentation; 3) exocortical technologies to understand brain function and treat neuropathologies; 4) the development of approaches to harness the human immune system for health and wellness; and 5) new strategies to engineer genomes and cells.

3.
Bioeng Transl Med ; 8(6): e10573, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023717

RESUMO

The cytokine interleukin (IL)-11 has been shown to play a role in promoting fibrosis and cancer, including lung adenocarcinoma, garnering interest as an attractive target for therapeutic intervention. We used combinatorial methods to engineer an IL-11 variant that binds with higher affinity to the IL-11 receptor and stimulates enhanced receptor-mediated cell signaling. Introduction of two additional point mutations ablates IL-11 ligand/receptor association with the gp130 coreceptor signaling complex, resulting in a high-affinity receptor antagonist. Unlike wild-type IL-11, this engineered variant potently blocks IL-11-mediated cell signaling and slows tumor growth in a mouse model of lung cancer. Our approach highlights a strategy where native ligands can be engineered and exploited to create potent receptor antagonists.

4.
Nat Commun ; 14(1): 5660, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704610

RESUMO

The RGD (Arg-Gly-Asp)-binding integrins αvß6 and αvß8 are clinically validated cancer and fibrosis targets of considerable therapeutic importance. Compounds that can discriminate between homologous αvß6 and αvß8 and other RGD integrins, stabilize specific conformational states, and have high thermal stability could have considerable therapeutic utility. Existing small molecule and antibody inhibitors do not have all these properties, and hence new approaches are needed. Here we describe a generalized method for computationally designing RGD-containing miniproteins selective for a single RGD integrin heterodimer and conformational state. We design hyperstable, selective αvß6 and αvß8 inhibitors that bind with picomolar affinity. CryoEM structures of the designed inhibitor-integrin complexes are very close to the computational design models, and show that the inhibitors stabilize specific conformational states of the αvß6 and the αvß8 integrins. In a lung fibrosis mouse model, the αvß6 inhibitor potently reduced fibrotic burden and improved overall lung mechanics, demonstrating the therapeutic potential of de novo designed integrin binding proteins with high selectivity.


Assuntos
Integrinas , Fibrose Pulmonar , Animais , Camundongos , Membrana Celular , Microscopia Crioeletrônica , Modelos Animais de Doenças
5.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37398153

RESUMO

The RGD (Arg-Gly-Asp)-binding integrins αvß6 and αvß8 are clinically validated cancer and fibrosis targets of considerable therapeutic importance. Compounds that can discriminate between the two closely related integrin proteins and other RGD integrins, stabilize specific conformational states, and have sufficient stability enabling tissue restricted administration could have considerable therapeutic utility. Existing small molecules and antibody inhibitors do not have all of these properties, and hence there is a need for new approaches. Here we describe a method for computationally designing hyperstable RGD-containing miniproteins that are highly selective for a single RGD integrin heterodimer and conformational state, and use this strategy to design inhibitors of αvß6 and αvß8 with high selectivity. The αvß6 and αvß8 inhibitors have picomolar affinities for their targets, and >1000-fold selectivity over other RGD integrins. CryoEM structures are within 0.6-0.7Å root-mean-square deviation (RMSD) to the computational design models; the designed αvß6 inhibitor and native ligand stabilize the open conformation in contrast to the therapeutic anti-αvß6 antibody BG00011 that stabilizes the bent-closed conformation and caused on-target toxicity in patients with lung fibrosis, and the αvß8 inhibitor maintains the constitutively fixed extended-closed αvß8 conformation. In a mouse model of bleomycin-induced lung fibrosis, the αvß6 inhibitor potently reduced fibrotic burden and improved overall lung mechanics when delivered via oropharyngeal administration mimicking inhalation, demonstrating the therapeutic potential of de novo designed integrin binding proteins with high selectivity.

6.
J Immunol ; 211(2): 295-305, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37256255

RESUMO

Spontaneous tumors that arise in genetically engineered mice recapitulate the natural tumor microenvironment and tumor-immune coevolution observed in human cancers, providing a more physiologically relevant preclinical model relative to implanted tumors. Similar to many cancer patients, oncogene-driven spontaneous tumors are often resistant to immunotherapy, and thus novel agents that can effectively promote antitumor immunity against these aggressive cancers show considerable promise for clinical translation, and their mechanistic assessment can broaden our understanding of tumor immunology. In this study, we performed extensive immune profiling experiments to investigate how tumor-targeted TLR9 stimulation remodels the microenvironment of spontaneously arising tumors during an effective antitumor immune response. To model the clinical scenario of multiple tumor sites, we used MMTV-PyMT transgenic mice, which spontaneously develop heterogeneous breast tumors throughout their 10 mammary glands. We found that i.v. administration of a tumor-targeting TLR9 agonist, referred to as PIP-CpG, induced a systemic T cell-mediated immune response that not only promoted regression of existing mammary tumors, but also elicited immune memory capable of delaying growth of independent newly arising tumors. Within the tumor microenvironment, PIP-CpG therapy initiated an inflammatory cascade that dramatically amplified chemokine and cytokine production, prompted robust infiltration and expansion of innate and adaptive immune cells, and led to diverse and unexpected changes in immune phenotypes. This study demonstrates that effective systemic treatment of an autochthonous multisite tumor model can be achieved using a tumor-targeted immunostimulant and provides immunological insights that will inform future therapeutic strategies.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Camundongos , Animais , Humanos , Feminino , Receptor Toll-Like 9 , Camundongos Transgênicos , Adjuvantes Imunológicos/farmacologia , Neoplasias Mamárias Animais/terapia , Neoplasias da Mama/terapia , Microambiente Tumoral , Linhagem Celular Tumoral
7.
J Biol Chem ; 299(6): 104755, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116708

RESUMO

The colony-stimulating factor 3 receptor (CSF3R) controls the growth of neutrophils, the most abundant type of white blood cell. In healthy neutrophils, signaling is dependent on CSF3R binding to its ligand, CSF3. A single amino acid mutation in CSF3R, T618I, instead allows for constitutive, ligand-independent cell growth and leads to a rare type of cancer called chronic neutrophilic leukemia. However, the disease mechanism is not well understood. Here, we investigated why this threonine to isoleucine substitution is the predominant mutation in chronic neutrophilic leukemia and how it leads to uncontrolled neutrophil growth. Using protein domain mapping, we demonstrated that the single CSF3R domain containing residue 618 is sufficient for ligand-independent activity. We then applied an unbiased mutational screening strategy focused on this domain and found that activating mutations are enriched at sites normally occupied by asparagine, threonine, and serine residues-the three amino acids which are commonly glycosylated. We confirmed glycosylation at multiple CSF3R residues by mass spectrometry, including the presence of GalNAc and Gal-GalNAc glycans at WT threonine 618. Using the same approach applied to other cell surface receptors, we identified an activating mutation, S489F, in the interleukin-31 receptor alpha chain. Combined, these results suggest a role for glycosylated hotspot residues in regulating receptor signaling, mutation of which can lead to ligand-independent, uncontrolled activity and human disease.


Assuntos
Leucemia Neutrofílica Crônica , Humanos , Leucemia Neutrofílica Crônica/diagnóstico , Leucemia Neutrofílica Crônica/genética , Leucemia Neutrofílica Crônica/metabolismo , Glicosilação , Ligantes , Mutação , Receptores de Fator Estimulador de Colônias/genética , Receptores de Fator Estimulador de Colônias/metabolismo , Treonina/metabolismo , Fatores Estimuladores de Colônias/genética , Fatores Estimuladores de Colônias/metabolismo
8.
Nat Commun ; 13(1): 2766, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589813

RESUMO

A major challenge in coronavirus vaccination and treatment is to counteract rapid viral evolution and mutations. Here we demonstrate that CRISPR-Cas13d offers a broad-spectrum antiviral (BSA) to inhibit many SARS-CoV-2 variants and diverse human coronavirus strains with >99% reduction of the viral titer. We show that Cas13d-mediated coronavirus inhibition is dependent on the crRNA cellular spatial colocalization with Cas13d and target viral RNA. Cas13d can significantly enhance the therapeutic effects of diverse small molecule drugs against coronaviruses for prophylaxis or treatment purposes, and the best combination reduced viral titer by over four orders of magnitude. Using lipid nanoparticle-mediated RNA delivery, we demonstrate that the Cas13d system can effectively treat infection from multiple variants of coronavirus, including Omicron SARS-CoV-2, in human primary airway epithelium air-liquid interface (ALI) cultures. Our study establishes CRISPR-Cas13 as a BSA which is highly complementary to existing vaccination and antiviral treatment strategies.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Humanos , Lipossomos , Nanopartículas , SARS-CoV-2/genética
9.
Cell ; 185(10): 1745-1763.e22, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35483375

RESUMO

Regulatable CAR platforms could circumvent toxicities associated with CAR-T therapy, but existing systems have shortcomings including leakiness and attenuated activity. Here, we present SNIP CARs, a protease-based platform for regulating CAR activity using an FDA-approved small molecule. Design iterations yielded CAR-T cells that manifest full functional capacity with drug and no leaky activity in the absence of drug. In numerous models, SNIP CAR-T cells were more potent than constitutive CAR-T cells and showed diminished T cell exhaustion and greater stemness. In a ROR1-based CAR lethality model, drug cessation following toxicity onset reversed toxicity, thereby credentialing the platform as a safety switch. In the same model, reduced drug dosing opened a therapeutic window that resulted in tumor eradication in the absence of toxicity. SNIP CARs enable remote tuning of CAR activity, which provides solutions to safety and efficacy barriers that are currently limiting progress in using CAR-T cells to treat solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peptídeo Hidrolases , Receptores de Antígenos de Linfócitos T , Linfócitos T/patologia
10.
Sci Adv ; 8(14): eabn8264, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394838

RESUMO

Adoptive cell therapy (ACT) has proven to be highly effective in treating blood cancers, but traditional approaches to ACT are poorly effective in treating solid tumors observed clinically. Novel delivery methods for therapeutic cells have shown promise for treatment of solid tumors when compared with standard intravenous administration methods, but the few reported approaches leverage biomaterials that are complex to manufacture and have primarily demonstrated applicability following tumor resection or in immune-privileged tissues. Here, we engineer simple-to-implement injectable hydrogels for the controlled co-delivery of CAR-T cells and stimulatory cytokines that improve treatment of solid tumors. The unique architecture of this material simultaneously inhibits passive diffusion of entrapped cytokines and permits active motility of entrapped cells to enable long-term retention, viability, and activation of CAR-T cells. The generation of a transient inflammatory niche following administration affords sustained exposure of CAR-T cells, induces a tumor-reactive CAR-T phenotype, and improves efficacy of treatment.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Citocinas , Humanos , Hidrogéis , Imunoterapia Adotiva/métodos , Neoplasias/patologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/genética , Linfócitos T/patologia
11.
Nat Med ; 28(2): 333-344, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35027753

RESUMO

The disialoganglioside GD2 is overexpressed on several solid tumors, and monoclonal antibodies targeting GD2 have substantially improved outcomes for children with high-risk neuroblastoma. However, approximately 40% of patients with neuroblastoma still relapse, and anti-GD2 has not mediated significant clinical activity in any other GD2+ malignancy. Macrophages are important mediators of anti-tumor immunity, but tumors resist macrophage phagocytosis through expression of the checkpoint molecule CD47, a so-called 'Don't eat me' signal. In this study, we establish potent synergy for the combination of anti-GD2 and anti-CD47 in syngeneic and xenograft mouse models of neuroblastoma, where the combination eradicates tumors, as well as osteosarcoma and small-cell lung cancer, where the combination significantly reduces tumor burden and extends survival. This synergy is driven by two GD2-specific factors that reorient the balance of macrophage activity. Ligation of GD2 on tumor cells (a) causes upregulation of surface calreticulin, a pro-phagocytic 'Eat me' signal that primes cells for removal and (b) interrupts the interaction of GD2 with its newly identified ligand, the inhibitory immunoreceptor Siglec-7. This work credentials the combination of anti-GD2 and anti-CD47 for clinical translation and suggests that CD47 blockade will be most efficacious in combination with monoclonal antibodies that alter additional pro- and anti-phagocytic signals within the tumor microenvironment.


Assuntos
Neoplasias Ósseas , Antígeno CD47 , Animais , Linhagem Celular Tumoral , Humanos , Imunoterapia , Camundongos , Recidiva Local de Neoplasia , Fagocitose , Microambiente Tumoral
12.
Cell Chem Biol ; 29(3): 451-462.e8, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34774126

RESUMO

Promoting immune activation within the tumor microenvironment (TME) is a promising therapeutic strategy to reverse tumor immunosuppression and elicit anti-tumor immunity. To enable tumor-localized immunotherapy following intravenous administration, we chemically conjugated a polyspecific integrin-binding peptide (PIP) to an immunostimulant (Toll-like receptor 9 [TLR9] agonist: CpG) to generate a tumor-targeted immunomodulatory agent, referred to as PIP-CpG. We demonstrate that systemic delivery of PIP-CpG induces tumor regression and enhances therapeutic efficacy compared with untargeted CpG in aggressive murine breast and pancreatic cancer models. Furthermore, PIP-CpG transforms the immune-suppressive TME dominated by myeloid-derived suppressor cells into a lymphocyte-rich TME infiltrated with activated CD8+ T cells, CD4+ T cells, and B cells. Finally, we show that T cells are required for therapeutic efficacy and that PIP-CpG treatment generates tumor-specific CD8+ T cells. These data demonstrate that conjugation to a synthetic tumor-targeted peptide can improve the efficacy of systemically administered immunostimulants and lead to durable anti-tumor immune responses.


Assuntos
Adjuvantes Imunológicos , Neoplasias , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Animais , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
13.
Front Immunol ; 12: 739037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594341

RESUMO

Background: Transfusion of COVID-19 convalescent plasma (CCP) containing high titers of anti-SARS-CoV-2 antibodies serves as therapy for COVID-19 patients. Transfusions early during disease course was found to be beneficial. Lessons from the SARS-CoV-2 pandemic could inform early responses to future pandemics and may continue to be relevant in lower resource settings. We sought to identify factors correlating to high antibody titers in convalescent plasma donors and understand the magnitude and pharmacokinetic time course of both transfused antibody titers and the endogenous antibody titers in transfused recipients. Methods: Plasma samples were collected up to 174 days after convalescence from 93 CCP donors with mild disease, and from 16 COVID-19 patients before and after transfusion. Using ELISA, anti-SARS-CoV-2 Spike RBD, S1, and N-protein antibodies, as well as capacity of antibodies to block ACE2 from binding to RBD was measured in an in vitro assay. As an estimate for viral load, viral RNA and N-protein plasma levels were assessed in COVID-19 patients. Results: Anti-SARS-CoV-2 antibody levels and RBD-ACE2 blocking capacity were highest within the first 60 days after symptom resolution and markedly decreased after 120 days. Highest antibody titers were found in CCP donors that experienced fever. Effect of transfused CCP was detectable in COVID-19 patients who received high-titer CCP and had not seroconverted at the time of transfusion. Decrease in viral RNA was seen in two of these patients. Conclusion: Our results suggest that high titer CCP should be collected within 60 days after recovery from donors with past fever. The much lower titers conferred by transfused antibodies compared to endogenous production in the patient underscore the importance of providing CCP prior to endogenous seroconversion.


Assuntos
COVID-19/terapia , Convalescença , SARS-CoV-2/imunologia , Soroconversão , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/sangue , Doadores de Sangue , COVID-19/sangue , COVID-19/imunologia , Feminino , Humanos , Imunização Passiva , Cinética , Masculino , Pessoa de Meia-Idade , Pacientes Ambulatoriais , RNA Viral/sangue , Soroterapia para COVID-19
14.
Neuro Oncol ; 23(12): 2042-2053, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34050676

RESUMO

BACKGROUND: Antibody drug conjugates (ADCs) targeting the epidermal growth factor receptor (EGFR), such as depatuxizumab mafodotin (Depatux-M), is a promising therapeutic strategy for glioblastoma (GBM) but recent clinical trials did not demonstrate a survival benefit. Understanding the mechanisms of failure for this promising strategy is critically important. METHODS: PDX models were employed to study efficacy of systemic vs intracranial delivery of Depatux-M. Immunofluorescence and MALDI-MSI were performed to detect drug levels in the brain. EGFR levels and compensatory pathways were studied using quantitative flow cytometry, Western blots, RNAseq, FISH, and phosphoproteomics. RESULTS: Systemic delivery of Depatux-M was highly effective in nine of 10 EGFR-amplified heterotopic PDXs with survival extending beyond one year in eight PDXs. Acquired resistance in two PDXs (GBM12 and GBM46) was driven by suppression of EGFR expression or emergence of a novel short-variant of EGFR lacking the epitope for the Depatux-M antibody. In contrast to the profound benefit observed in heterotopic tumors, only two of seven intrinsically sensitive PDXs were responsive to Depatux-M as intracranial tumors. Poor efficacy in orthotopic PDXs was associated with limited and heterogeneous distribution of Depatux-M into tumor tissues, and artificial disruption of the BBB or bypass of the BBB by direct intracranial injection of Depatux-M into orthotopic tumors markedly enhanced the efficacy of drug treatment. CONCLUSIONS: Despite profound intrinsic sensitivity to Depatux-M, limited drug delivery into brain tumor may have been a key contributor to lack of efficacy in recently failed clinical trials.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imunoconjugados , Preparações Farmacêuticas , Anticorpos Monoclonais Humanizados , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/tratamento farmacológico , Humanos
15.
Commun Biol ; 4(1): 452, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846527

RESUMO

Leukemia inhibitory factor (LIF), a cytokine secreted by stromal myofibroblasts and tumor cells, has recently been highlighted to promote tumor progression in pancreatic and other cancers through KRAS-driven cell signaling. We engineered a high affinity soluble human LIF receptor (LIFR) decoy that sequesters human LIF and inhibits its signaling as a therapeutic strategy. This engineered 'ligand trap', fused to an antibody Fc-domain, has ~50-fold increased affinity (~20 pM) and improved LIF inhibition compared to wild-type LIFR-Fc, potently blocks LIF-mediated effects in pancreatic cancer cells, and slows the growth of pancreatic cancer xenograft tumors. These results, and the lack of apparent toxicity observed in animal models, further highlights ligand traps as a promising therapeutic strategy for cancer treatment.


Assuntos
Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/antagonistas & inibidores , Neoplasias Pancreáticas/terapia , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Ligantes , Engenharia de Proteínas
16.
Nat Chem Biol ; 17(9): 937-946, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33767387

RESUMO

Selective protein degradation platforms have afforded new development opportunities for therapeutics and tools for biological inquiry. The first lysosome-targeting chimeras (LYTACs) targeted extracellular and membrane proteins for degradation by bridging a target protein to the cation-independent mannose-6-phosphate receptor (CI-M6PR). Here, we developed LYTACs that engage the asialoglycoprotein receptor (ASGPR), a liver-specific lysosome-targeting receptor, to degrade extracellular proteins in a cell-type-specific manner. We conjugated binders to a triantenerrary N-acetylgalactosamine (tri-GalNAc) motif that engages ASGPR to drive the downregulation of proteins. Degradation of epidermal growth factor receptor (EGFR) by GalNAc-LYTAC attenuated EGFR signaling compared to inhibition with an antibody. Furthermore, we demonstrated that a LYTAC consisting of a 3.4-kDa peptide binder linked to a tri-GalNAc ligand degrades integrins and reduces cancer cell proliferation. Degradation with a single tri-GalNAc ligand prompted site-specific conjugation on antibody scaffolds, which improved the pharmacokinetic profile of GalNAc-LYTACs in vivo. GalNAc-LYTACs thus represent an avenue for cell-type-restricted protein degradation.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Lisossomos/metabolismo , Acetilgalactosamina/metabolismo , Humanos , Células Tumorais Cultivadas
17.
Protein Sci ; 30(4): 716-727, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33586288

RESUMO

Infection with SARS-CoV-2 elicits robust antibody responses in some patients, with a majority of the response directed at the receptor binding domain (RBD) of the spike surface glycoprotein. Remarkably, many patient-derived antibodies that potently inhibit viral infection harbor few to no mutations from the germline, suggesting that naïve antibody libraries are a viable means for discovery of novel SARS-CoV-2 neutralizing antibodies. Here, we used a yeast surface-display library of human naïve antibodies to isolate and characterize three novel neutralizing antibodies that target the RBD: one that blocks interaction with angiotensin-converting enzyme 2 (ACE2), the human receptor for SARS-CoV-2, and two that target other epitopes on the RBD. These three antibodies neutralized SARS-CoV-2 spike-pseudotyped lentivirus with IC50 values as low as 60 ng/ml in vitro. Using a biolayer interferometry-based binding competition assay, we determined that these antibodies have distinct but overlapping epitopes with antibodies elicited during natural COVID-19 infection. Taken together, these analyses highlight how in vitro selection of naïve antibodies can mimic the humoral response in vivo, yielding neutralizing antibodies and various epitopes that can be effectively targeted on the SARS-CoV-2 RBD.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/metabolismo , COVID-19/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos Neutralizantes/química , Sítios de Ligação , Epitopos/química , Epitopos/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Glicoproteína da Espícula de Coronavírus/química
18.
ACS Chem Biol ; 16(1): 58-66, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33307682

RESUMO

The glucagon-like peptide 1 receptor (GLP-1R) is a class B G-protein coupled receptor (GPCR) and diabetes drug target expressed mainly in pancreatic ß-cells that, when activated by its agonist glucagon-like peptide 1 (GLP-1) after a meal, stimulates insulin secretion and ß-cell survival and proliferation. The N-terminal region of GLP-1 interacts with membrane-proximal residues of GLP-1R, stabilizing its active conformation to trigger intracellular signaling. The best-studied agonist peptides, GLP-1 and exendin-4, share sequence homology at their N-terminal region; however, modifications that can be tolerated here are not fully understood. In this work, a functional screen of GLP-1 variants with randomized N-terminal domains reveals new GLP-1R agonists and uncovers a pattern whereby a negative charge is preferred at the third position in various sequence contexts. We further tested this sequence-structure-activity principle by synthesizing peptide analogues where this position was mutated to both canonical and noncanonical amino acids. We discovered a highly active GLP-1 analogue in which the native glutamate residue three positions from the N-terminus was replaced with the sulfo-containing amino acid cysteic acid (GLP-1-CYA). The receptor binding and downstream signaling properties elicited by GLP-1-CYA were similar to the wild type GLP-1 peptide. Computational modeling identified a likely mode of interaction of the negatively charged side chain in GLP-1-CYA with an arginine on GLP-1R. This work highlights a strategy of combinatorial peptide screening coupled with chemical exploration that could be used to generate novel agonists for other receptors with peptide ligands.


Assuntos
Desenho de Fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Sequência de Aminoácidos , Microscopia Crioeletrônica , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Ligantes , Mutagênese , Biblioteca de Peptídeos , Transdução de Sinais , Relação Estrutura-Atividade
19.
Sci Immunol ; 5(54)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288645

RESUMO

SARS-CoV-2-specific antibodies, particularly those preventing viral spike receptor binding domain (RBD) interaction with host angiotensin-converting enzyme 2 (ACE2) receptor, can neutralize the virus. It is, however, unknown which features of the serological response may affect clinical outcomes of COVID-19 patients. We analyzed 983 longitudinal plasma samples from 79 hospitalized COVID-19 patients and 175 SARS-CoV-2-infected outpatients and asymptomatic individuals. Within this cohort, 25 patients died of their illness. Higher ratios of IgG antibodies targeting S1 or RBD domains of spike compared to nucleocapsid antigen were seen in outpatients who had mild illness versus severely ill patients. Plasma antibody increases correlated with decreases in viral RNAemia, but antibody responses in acute illness were insufficient to predict inpatient outcomes. Pseudovirus neutralization assays and a scalable ELISA measuring antibodies blocking RBD-ACE2 interaction were well correlated with patient IgG titers to RBD. Outpatient and asymptomatic individuals' SARS-CoV-2 antibodies, including IgG, progressively decreased during observation up to five months post-infection.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Índice de Gravidade de Doença , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/sangue , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/sangue , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
20.
Cancer Res ; 80(21): 4731-4740, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32958548

RESUMO

Imaging strategies to monitor chimeric antigen receptor (CAR) T-cell biodistribution and proliferation harbor the potential to facilitate clinical translation for the treatment of both liquid and solid tumors. In addition, the potential adverse effects of CAR T cells highlight the need for mechanisms to modulate CAR T-cell activity. The herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene has previously been translated as a PET reporter gene for imaging of T-cell trafficking in patients with brain tumor. The HSV1-TK enzyme can act as a suicide gene of transduced cells through treatment with the prodrug ganciclovir. Here we report the molecular engineering, imaging, and ganciclovir-mediated destruction of B7H3 CAR T cells incorporating a mutated version of the HSV1-tk gene (sr39tk) with improved enzymatic activity for ganciclovir. The sr39tk gene did not affect B7H3 CAR T-cell functionality and in vitro and in vivo studies in osteosarcoma models showed no significant effect on B7H3 CAR T-cell antitumor activity. PET/CT imaging with 9-(4-[18F]-fluoro-3-[hydroxymethyl]butyl)guanine ([18F]FHBG) of B7H3-sr39tk CAR T cells in an orthotopic model of osteosarcoma revealed tumor homing and systemic immune expansion. Bioluminescence and PET imaging of B7H3-sr39tk CAR T cells confirmed complete tumor ablation with intraperitoneal ganciclovir administration. This imaging and suicide ablation system can provide insight into CAR T-cell migration and proliferation during clinical trials while serving as a suicide switch to limit potential toxicities. SIGNIFICANCE: This study showcases the only genetically engineered system capable of serving the dual role both as an effective PET imaging reporter and as a suicide switch for CAR T cells.


Assuntos
Genes Reporter , Imunoterapia Adotiva/métodos , Osteossarcoma , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Timidina Quinase/análise , Animais , Antivirais/farmacologia , Antígenos B7/imunologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Ganciclovir/farmacologia , Genes Transgênicos Suicidas , Herpesvirus Humano 1 , Humanos , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Proteínas Virais/análise , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...